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Abstract. Simulations of an elastic string in 1 + 1 dimensions near and at the depinning 
tlueshold fc are presented. The spatial dependence of the roughness is characterized by two 
exponents. One. T, z 0.9, describes the height-height correlations. The other. x 2 1.15, 
measures how the transverse width, W, of the string increases with increasing string length. 
Since x > 1 any physical string will eventually break as its length is increased. The growth of 
the width of the string with time is wntrolled by an exponent p 2 0.9. As the applied driving 
force approaches fc from above the width increases according to W - (f - f.)-" with o 2 3. 
The dependence of fc on the strength of the random potenrial is found to be in agreement with 
the collective pinning theory by Larkin and Ovchinnikov. 

1. Introduction 

The present paper is concerned with the motion of an elastic string through a static random 
potential (not random forces). A model with continuous variables is simulated using 
overdamped dynamics. We concentrate, in particular, on the behaviour precisely at, and in 
the immediate vicinity above, the depinning threshold. We study the threshold force, the 
distribution of energy discontinuities, the roughness exponents and the relation between the 
applied force and the resulting velocity. 

The motion of an elastic medium through a static random potential is a model of a variety 
of physical phenomena. Whenever we drag our spoon out of our cup of tea we observe 
the interaction of the elastic triple line with the uneven surface of the teaspoon [1,2] The 
triple line is the line were the liquid, the air, and the solid all meet. Other examples include 
the motion of flux lines through the pinning potential of superconductors [3], the motion of 
charge density waves [4] and surface growth in a dirty environinent [5 ] .  

The simplest version of this type of physics is a one-dimensional suing moving through 
a two-dimensional background of random pinning centres [&lo]. This model should be 
directly connected to the triple line pinning, and also to flux lines as well as surface growth 
in restricted geometries. 

The behaviour of such systems is characterized by~the existence of a non-zero friction or 
pinning force which has to be overcome in order to make the elastic line move., One would 
like to be able to calculate this threshold force from the properties of the random potential 
together with the elastic properties of the string. The most celebrated attempt at such a 
calculation is the Larkin-Ovchinnikov (Lo) collective pinning theory [ 1 I]. In this approach 
the pinning force is estimated from the fluctuations in the random forces within regions 
of the elastic medium which are only slightly distorted. In the following we will compare 
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1862 H J Jensen 

the Lar~n-Ovchinnikov estimate with our numerical simulations. We do find agreement 
with the observed dependence on the amplitude of the random pinning potential. The same 
agreement was not encountered in two-dimensional model simulations [12]. In this paper 
we will discuss an alternative derivation of the threshold force [13]. This method focuses 
on the connection between the threshold force and the discontinuities in the potential energy 
of the system caused by elastic instabilities. 

As the sbing is moved through the random potential, either at threshold or just above 
threshold, it becomes rough. The presence of the static random potential gives rise to 
roughness exponents which are significantly larger than the Karda-Parisi-Zhang [ 14,5] 
(KPZ) values and closer to experimentally observed values [15]. This fact has inspired 
Parisi 1.51 to suggest that static disorder is responsible for the discrepancy between the 
roughness exponent observed experimentally for growing interfaces and the Kpz exponents. 
We shall, in fact, see that the string studied in the present paper becomes so rough, when 
the applied driving force is lowered towards the threshold value from above, that the string 
inevitably breaks [4,7,81. 

There have been many recent investigations of the roughning of the elastic string 
or interface as it is forced through a random background potential or random forces. 
Nattermann et a1 [I61 performed a functional renormalization-group calculation on a 
diffusion equation containing a quenched random force term. Our simulations are done 
for a random potential. Nevertheless, the simulations yield values for the the dynamical 
exponent z and the velocity exponent B in qualitative agreement with their results. Namely, 
z < 2, indicating superdiffusive behaviour at the depinning transition, and B c 1 leading 
to a negative curvature of the velocity versus driving force curve. Our simulations are 
characterized by two roughness exponents. One exponent 17 _N 0.9 describes the spatial 
behaviour for a given system size, the other one, x N 1.15, describes the dependence of the 
roughness on the size of the system. The value of 17 is in good agreement with the result 
obtained by Nattermann et a1 extrapolated to one dimension. The dynamical exponent is 
obtained as z = q/@,  where f i  - 0.9 describes the time evolution of the roughness. The 
other exponent x does not appear in their treatment. Narayan and Fisher have suggested 
that q = 1 [17]. Our simulation might, in fact, be consistent with 17 = 1 in the limit of long 
strings. The paper by Nattermann et a! also contains a derivation of an expression for the 
depinning threshold. Their estimate agrees with the one obtained from collective pinning 
theory [ll]. In section 5 below we show that our simulations agree with the collective 
pinning expression. 

Dong eta1 [6] have simulated a model of an elastic string similar to the one studied in 
the present paper. However, they restricted their analysis of the roughness of the string to 
a study of the spatial dependence of the height-height correlation function for fixed system 
size. For this reason they failed to observe the breaking of the string with increasing system 
size [7,8]. 

In connection with modelling of interface growth there has appeared a range of studies 
of discrete time step cellular automata-like algorithms [5,8-10,181. These papers are con- 
cemed with the increase in the scaling exponents due to static random forces. They include 
a threshold explicitly in the update algorithm. The work by Roux and Hansen [8] also ob- 
serves (in agreement with the present paper) that the fluctuations in the interface become so 
large at long distances that the interfaceitself is destroyed. The model studied here is similar 
in spirit to the models studied in these papers [18,5,6,8-lo]. It differs in detail by being 
a continuous dynamics simulation and by including a random potential rather than random 
forces. Moreover, there is no threshold explicit in our definition of the dynamics of the 
model. Threshold dynamics arises as a consequence of the continuous equation of motion. 
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The paper is organized in the following way. In section 2 the details of the model are 
given and the simulation method is described. In section 3 the behaviour of the string as 
it is moved at-r in the vicinity above-threshold is presented. We discuss the avalanche 
activity, the roughness of the string as a function of f - fc, where f is the applied force 
and fc is the threshold force. Furthermore, we discuss the velocity-force relation. In 
section 4 we discuss the breaking of the string. In section 5 we study the scaling of 
fi with the amplitude of the random potential. This result is compared with collective 
pinning theory /Ill. We present an alternative definition of the threshold force in terms of 
the discontinuities in the total energy of the string. Section 6 contains a summary and a 
discussion of the consequences of the string-breaking to experimental situations. 

2. Model 

Figure 1 shows a sketch of the system considered in the present paper. A discrete version 
of an elastic string. The system consist of L beads which can slide on parallel rails. The 
separation between the rails is equal to one unit of length. The position along the rail 
of bead number n is denoted by h,. Pinning centres are positioned at random along the 
rails. Each of the pinning centres have the same strength. Beads on adjacent rails interact 
through a harmonic potential. The potential energy of the system is defined by the following 
equation: 

N-I 

V = C[(h.+i - hn? + U;(hJI (1) 

U,”(h) = U ( h  - z;) (2)  

“=I  

where the pinning energy term U: is given by 

2; 

here the sum runs over the positions z; of the pinning centres along the rail number n .  All 
the pinning centres are characterized by the same Gaussian shape of the pinning well: 

U@) = -Ap exp(-(s/R,,)*). (3) 

The pinning centres are distributed randomly with the same uniform probability and average 
density ne along each rail. 

Figure 1. Beads restricted to move dong a set of parallel mils. The crosses indicate the random 
position of Gaussh pinning wells (see the three-dimensional insert to the right of the main 
figure). The dolted line connecting the beads indicates the elastic coupling. 
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We are interested in systems which exhibit over-damped dynamics. Hence, we define 
the equation of motion for the chain by the following set of equations: 

dhn av 
dt ah, 

q - =  j-- h = l ,  ..., L (4) 

where j is the applied driving force. We fix our time unit by choosing r~ = 1. 
All simulations start from the straight string. The evolution of the string has three stages 

(details will be discussed below). A brief initial stage during which the string relaxes to 
the first pinning centres. Next an intermediate transient stage where the roughness of the 
string grows monotonically. Finally, the asymptotic long-time regime where the roughness 
has saturated. 

2.1. Simulation method: at threshold 

It is very difficult to access the region near or at the threshold for depinning. One problem 
is caused by slowing-down effects. More and more time steps are needed in order to make 
the chain move a given distance and hence to maintain a reasonable level of statistical 
averaging. 

Another, and more important problem, comes from the fluctuations in the force produced 
by the random potential. The applied force j will only be able to move the chain through a 
certain region of the random background if j at any instance is larger than the total pinning 
force fp (per length): 

The equation of motion (4) averaged over the beads of the chain determines the average 
velocity U = E, h, f L ,  i.e. the equation of motion for the centre of mass of the chain is 

u = f + f p .  (6) 
Figure 2 shows a sketch of - fp as function of the centre of mass (COM) h. The applied 
force can only move the COM beyond the point h, if the force can overcome the maximum 
pinning force, i.e. f > jp(hm). The time average of the COM velocity 5 is, according 
to (6), given by the broken area on figure 2. This will lead to a discontinuous jump in J at 
j = -fp(hm). We have J = 0 for f c -fp(hm) and a finite non-zero 5 for f > -fp(hm). 
This will be the situation as long as jp exhibits fluctuations as a function of the COM. These 
fluctuations might vanish in the limit of infinite systems. We shall, however, see below that 
other problems await us in the large system limit. The first-order nature of the depinning 
transition was also observed by Kessler et al in their simulations of an open chain in a 
random force field [181. 

Thus, it is not possible to drive a finite system right at the threshold by use of (4). We 
can, however, drive the system in the limit U + 0 by allowing f to vary in time in such 
a way that the applied force (which is always taken to be spatially homogeneous) at any 
instance precisely counteracts the force from the random potential at that instance. In this 
way we make sure that the total force on the string is kept equal to zero. This is how we 
study the quasi-static motion of the string [12,19]. 

The details of the simulation are as follows. The string is moved as a rigid body a 
small displacement dh (typically dh = 4 x by the substitution h, -+ h, + dh. The 
COM position changes accordingly from h to h + dh. The string is then allowed to relax 
to the new environment by use of (4) while the COM is fixed at h + dh. The time step of 
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Figure 2. Sketch of the variation of (minus) the total pinning force -(fQ) as the cenire of mass 
( k )  is forced through the pinning potential. The area of the shaded region determines the jump 
in the ceniredf-mass velocity at the depinning threshold. 

this annealing is performed in the following way. Equation (4) is used to calculate new 
positions h: of all the beads along the shing. The total change in the COM position during 
this time step is then calculated as Sh = C(hL - h.)/L. If 6h # 0 we add -Sh/L to each 
h, before we perform the next annealing time step. This is, of course, identical to keeping 
the total force (pinning forces plus applied forces) on the string exactly equal to zero during 
the annealing at the COM position h +dh. We typically perform about 40 of these annealing 
time steps at COM position h + dh before we once again move the string as a rigid body to 
the next COM position h + 2dh. 

2.2. Simulafion method: above threshold 

The simulation of the equation of motion (equation (4)) for an applied spatially homogeneous 
and time independent force f somewhat larger than the threshold force is straightforward?. 
We simply discretize (4) directly 

(7) 
where ftOt includes the applied force f ,  the elastic forces, and the pinning forces obtained 
from the potential in (2). The time step At is chosen to be the largest possible value for 
which the result is independent of A f .  

hn(t + At)  = hn(t) + ftodt)At 

3. Results 

This section is divided into two parts. First we consider the quasi-static motion of the string 
precisely at threshold, as described in the previous section. We consider discontinuities in 
the energy of the string occurring when elastic energy is relased abruptly as the string jumps 
from one metastable state to another. These jumps can be considered as the avalanches of 
the present system [ZO]. We also study different measures of the roughness of the string. 
Next we study the motion of the string for f - f ,  larger than zero. We look at the velocity- 
force characteristic. Finally we report results on the dependence of the roughness of the 
string on the excess driving force f - f c .  

t To be precise: when f > -fp(hm). see figure 2. for the value of fQ(hm) relevant to the actual realization of 
the random potential. 
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3.1. At threshold 

In order to illustrate how the energy becomes a discontinuous function of the position of the 
string we will consider the interaction of the string with one single pinning centre. Figure 3 
shows the variation of the string configuration and corresponding potential energy as the 
COM of the string is moved quasi-statically over one pinning centre. The total force on the 
string is always zero. Metastable states develop leading to an abrupt decrease in the energy 
when the string jumps onto the pinning centre and again as it jumps off [ 19,12,22,23]. 

We will now consider the successive pinning and depinning of sections of the string 
as it is moved through a finite density of pinning centres. Figure 4 shows an example 
of the instantaneous configuration of a subsection of the string. This blow-up shows how 
the string wanders smoothly through the pinning potential. In figure 5 we plot the string 
configuration at successive times in the asymptotic regime where the roughness of the string 
has saturated (see below). One notices that the motion occurs in the form of sections which 
jumps ahead while other sections of the string remain statically pinned. In the late stage 
the string remains static for most of the time. A picture depicted by Parisi [5]. 

The energy of the string is suddenly decreased when the string jump from one metastable 

0 

h 

Figure 3. (a) Successive configurations of the string LIS an elastic inswbility is encauntered. 
A string of length 20 is moved through a single pinning centre of strength Ap = 0.1. range 
Rp = 0.125, positioned at h = 2.2 and n = 10. (b) exhibit the discontinuous variation in the 
potential energy of the system during the instability. 
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Figure 4. A subsection of an elastic stting of length 640 smoothly wandering through the set 
of randomly positioned pinning centres all of strength A. = 0.5 and m g e  Rp = 0.125. The 
density of pinning cenws is np = 0.37 along each rail. 
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Figure 5. Plot of the string configuration at successive time instvnts in the saturated regime. 
The full curve carresponds to 6.6 x IO' time steps, *e long broken curve to 7.4 x IO', the 
broken curve to 8.2 x IO4, and finally the dotted curve corresponds to 9.0 x LO' time steps. The 
parameters are L = 320, Ap = 0.5, Rp = 0.125 and np = 0.37. 

configuration to the next. Figure 6 shows the distribution of energy releases, AE, for 
different system sizes. The distribution P ( A E )  falls off exponentially for large A E  values, 
see figure 6(u). In the small AE limit the distribution exhibits power-law behaviour, 
P ( A E )  - AE-b with an exponent b of about 1.4. See figure 6(b). 

As the system size increases the support of the distribution P ( A E )  gradually shifts to 
smaller A E  values. The exponential cutt-off region vanishes while the scaling region at 
small AE values extends to even smaller energies. A similar low-energy behaviour was 
observed in the simulation of the longitudinal harmonic chain 1211. The average value (AE)  



~ 

1868 H J Jensen 

12 

8 - - - 
q 
4 s 
- 4  

v 

I 

F 

0 
0 0.1 0.2 

AE 

. .  
I I 

-3 -2  -1 

logio(AE) 

Figure 6. (a) Single logarithmic plot of the distribution of energ) discontinuities, AE for 
different length of the chain: full curve L = 160, long broken curve L = 320, broken curve 
L = 640, and dotted curve L = 1000. The insert shows a double logarithmic plot of the 
average of AE for the different lengths of the chain. The shaight line has slope -1. (b) 
A double IogOrithmic plot of the data plotted in (a).  The straight line has slope -1.4. The 
parameters are A, = 0.5. Rp = 0.125 and np = 0.37. 

of A E  scales with the length of the chain like ( A E )  - L-’ where U X 1. See the insert in 
figure 6(u). 

Below we shall (see section 5) connect the distribution of discontinuities in the energy 
to the average force needed to move the string through the pinning potential. This will 
enable us to understand the size dependens of ( A E ) .  Before we finish the present section 
we turn to a discussion of the roughness of the string. 

Roughness is most often characterized through the study of either the height correlation 
function or the average square width. The height correlation function is defined as 

(8) g ( x ,  r )  = ( ~ x  + X O ,  t )  -WO). t ~ * ) ~ , ,  



Fate of the elastic string 1869 

Figure 7, (a) Double logarithmic plot of the height conelation function defrned in (8) measured 
in the sahlrated regime (meraged over time and random potential) for three different chain 
lengths: full curve L = 80, long broken curve L = 160, and short broken curve L = 320. 
Parameten are A ,  = 0.5, R, = 0.125. and n, = 0.37. The slope of stnight line is 0.9. (b)  A 
linear plot of the same data as in (a). The figure also conWins the fit to the functional form 
given in (9). The simulated d a h  cannot be distinguished from Le fit. 

with an average (when possible) over disorder. The spatial behaviour of g ( x , t )  is 
characterized by an exponent q. Namely, g ( x ,  t )  - xz'i The measurement of q is done 
in the long time limit when the roughness has saturated. In figure 7(a) we present a double 
logarithmic plot of the m e a s d  g ( x )  = g(x, t + 00) for different system sizes. One 
observes an algebraic regime in which g(x )  - xzV with q 2: 0.9. The same value was 
found by Dong et a1 161. In the limit of large systems this exponent might, in fact, simply 
be equal to 1 as suggested by Narayan and Fisher [17]. 

The amplitude of the function g(X) clearly depends on the size of the system. This 
suggests the following algebraic form for g ( x )  in a periodic system: 

g ( x )  = A ( L ) x ~ ~ ( L  -x ) '?  (9) 
where A ( L )  is a size-dependent amplitude. 

Figure 7(6) contains linear plots of the measured g ( x )  together with fits to the form 
in (9). The fitted curves are obtained by putting q = 0.9 and fixing the amplitude in 
x = L / 2  to the measured value. As seen from the plot one cannot distinguish the measured 
curve from the one obtained from (9). 

Another useful measure of a surface's roughness consists in the square fluctuations in 
the height of the chain 

W(t ,  L )  = ( [ N x ,  f )  - (W, ~ N z , l z ) x .  (10) 
Here the average is done over the position x over a string of a given length L.  The 
time evolution of W during the transient period before W saturates leads to the definition 
of the exponent p through the expression W ( t ,  L )  - t28. The size dependence is 
subsequently studied in the limit t + w. One defines the roughness exponent x through 

Figure 8 contains the time and size dependence of W ( t ,  L ) .  The simulations are started 
from a straight string. The early-time region during which the string moves on to the first 
pinning centres is characterized by a small exponent of about 1. As soon as the string starts 
to move through the pinning centres this exponent changes to p x 0.9. This exponent is 
much larger than the KPZ value (BK~Z = 4). It is very close to the value p % 0.95 found 
for the probabilistic growth model by Sneppen [10,9] and for the slightly different model 
simulated by Roux and Hansen [SI. 

W ( t  + 03, L )  - L2X. 
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(a) I06,dC) ( b )  b d L 1  

Figure 8. (a) Double logarithmic plot of the time dependence of W ( r ,  L )  (see equation (10)) 
beforr saturation for d f l e m t  lengths of the chain: from bottom to top L = 80, 160. 320, 
and 640. Parameters are Ap = 0.5, Rp = 0.125 and np = 0.37. The slopes of the two 
straight limes are 0.5 and 1.8 respectively. (b) Double logarithmic plot of the dependence upon 
chain length of the square width W(t  + m. L )  (0) together with the maximum amplitude 
g(x = Lf2. I -+ m) (+) of the height correlation function. The two straight lines have the same 
slope. namely 2.3. The parameten are as in (a). 

Our finding is consistent with Parisi's suggestion that systems driven precisely at the 
depinning transition exhibit roughening behaviour different from the Kpz values 151. The 
simulated exponent p of the string is not far from experimental values for wetting in porous 
media. Various experiments quote different exponents from about p = 0.7-0.9 see [15]. 

The dependence of W upon L in the long-time limit is shown in figure 8(b). The 
roughness exponent found this way is x = 1.15, i.e. larger than one. A similar value was 
also observed in [7,8]. In order to show that the behaviour of W(t ,  L )  is consistent with 
the measurement of g ( x ,  t )  we have also plotted g(L/2, t -+ 00) in figure 8(b). The same 
size scaling is observed. We conclude that the amplitude A(L) of g ( x )  (see equation (9)) 
scales like 

Thus the strain on a single chain segment is given by g(1)1/2 = A(L)II2(L - 1)q w 
A(L)'/?-LV - Lk-q). We will discuss the implications of this result for the large-system 
limit L + CO below. 

The roughness exponents q and x found here for the elastic string are different from the 
exponents obtained from the growth algorithms considered by Sneppen [10,9]. Hence, we 
have established that the time behaviour before saturation described by this growth model 
is equal to the time behaviour for the continuum model defined by the elastic equation of 
motion (equation (4)) at least in the sense that the two models have identical p exponent. 
On the other hand, the roughness of the interface created by the two models is different. 
The Sneppen model leads to x < 1 because the microscopic updating role explicitly, and 
in an ad hoc way, only allows local slopes smaller than one. This constraint will obviously 
influence the roughness in the saturatd regime while the constraint does not limit the early 
time behaviour. When the slope constraint is relaxed, as Roux and Hansen do in their 
version of the growth model (the Robin Hood model) 18.91, both the temporal and spatial 
behaviour obtained from the equation of motion (4) are reproduced by the growth algorithm. 
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3.2. Above threshold 

In figure 9 we present the measurement of the relationship between the disorder and time 
average velocity ii and the applied driving force f .  As discussed in section 2.1 it is difficult 
to access the region in the vicinity just above the threshold force. We find that in the 
accessible region ii is well approximated by the form 

4 

I 

0~ 

8 

m 

I= 2 - - 
a 

0 

0 - 2  

with 6' 0.5. Dong et al made a great effort to study the region near the depinning [6]. 
They found that they could not distinguish between an algebraic form as in (12) with an 
exponent 6' w 0.25 and a logarithmic behaviour u - l/log(f/f,). 

We found in the previous section that the string became unusually rough when driven 
precisely at threshold. It is interesting to see how the roughness of the string develops as 
the depinning threshold is approached from above. In figure 10 we plot log(W) as function 
of log( f - fc) for several system sizes. We find that W - ( f  - fc)-" with U Y 3. This 
result suggests the following scaling form W = ( f  - f c ) - T ( L * x ( f  - fJ'). The scaling 
function must behave like r ( p )  - 1 as p -+ 0 and r ( p )  - p as p + W. 

The following simple argument illuminates the dependence of W on f - fc. In the 
continuum limit our string is described by the following Hamiltonian: 

H = ~ L d l ( ? ~ ( a ~ h ) Z + V ( x , h ( ~ ) ) -  f h ( x ) ] .  

Here K is the string tension V ( x ,  h ( x ) )  is the background potential, and f the applied 
driving force. The equation of motion is 

. a~ av p h = - - = = a 2 h - - + f  
ah ah 
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Figure 10. Double logarithmic plot of the time and disorder averaged (maximum) amplitude of 
the height conelation function against the difference behveen the applied force and the tkshold  
force. (0) correspond to L = 320, (+) to L = 640, and (0) Lo L = 1000. The slope of the 
straight line is -3. Parameters are Ap = 05. Rp = 0.125 and np = 0.37. 

equation of motion in the cwmoving frame is 

= Ea$ + x ( x ,  I; + U t ) .  

We have lumped all forces together in one force 

- a V ( x , i + u t )  
,y(x,h + u t )  = - 4- f - v u .  ai; 

In order to proceed we are going to replace the quenched fluctuating force term K ( x ,  I;+ u t )  
by a fluctuating term t ( x ,  t )  which only contains annealed disorder. This is, of course, a 
dubious undertaking whose only virtue is to allow us to proceed. In the co-moving frame 
the string sees pinning centres of ranges Rp passing by at a rate U = npu. Imagine sitting 
at a fixed position x along the string. At random instances of time ti pinning centres pass 
by. Let the time variation from a single pinning centre be given by f(r). The fluctuating 
pinning force experienced at position x produced by the passage of the individual pinning 
centres is then given by 

The equal-position temporal correlation function is according to Campbell’s theorem 1231 

The function f ( t )  will essentially have support only over a time interval given by T = R , / u .  
Hence, it is a sensible approximation to repIace the integral at the right-hand side of 18 by 
T(A,/Rp)zexp(-lr~ - tz l jT) .  The equal-time spatial correlation function can be discussed 
in a similar way. 

Thus, it appears natural to assume the following correlator for the forces F(x ,  T) 

(19) 2 RP 
ao 

( H x ,  Mx’ ,  t’)) = (npA,) - exp(lx - x’I/Rp) exp(-lt - f’l/T) 
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with T = R p / u .  (Remember: np is the one-dimensional pinning density along the rails and 
a0 denotes the spacing between the rails). The average of the square width of the string is 
now readily obtained from the Green's function G(x,  t )  of (15), 

(20) 1 WO 1 40 --- 
3 0 2 + w o  E 1 -!- (K/I7l0) 'q4 q2 + 40' ' 

Here qo = k / R P  and 00 = 2a/T = 2nu/Rp. The bombarhent of the string by the 
pinning centres occur at a rate o = 2nnpu. Thus, we consider the width when the 
string is driven at this frequency. The right-hand side of (20) is clearly finite as long 
as o - U - (f - fc)O is non-zero. In the limit of f -+ fc =+ U + 0 the expression in (20) 
reduces to 

(21) W ( u )  - U-4 - (f - f)-@. 
The result of our simple discussion is that the square width of the string diverges with a 
power U = 48 as f -+ fc. We found numerically B % and would therefore expect U % 2.  
The simulation indicates U x 3. A discrepancy is not surprising given our rather cavalier 
treatment of the fluctuating force term. 

4. Breaking of the string 

In hear  elasticity strain and stress are proportional, i.e. g(1)'" o( fb where fb denotes the 
total force across a spring or bond. The exponent x = 1.15 together with q < 1 implies 
that the extension per length of the chain g(l)'12 - LX-" will grow unbounded as L + ca. 

Any realistic string will break if the stress per length exceeds a certain amount. Thus 
the string will break when driven through the potential close to threshold. 

A similar situation was found in simulations of a two-dimensional lattices in a random 
environment [12]. The strength of the random potential which is able to induce topological 
defects were found to decrease as l/log(L). 

The string is tom in pieces due to the unbounded strain induced by the fluctuations 
in the pinning forces. Coppersmith has given an illuminating mean-field argument which 
explains how fb (and therefore also g(1)) can grow with the system size [4]. Consider 
a d-dimensional system driven by a driving force equal to the depinning value f = fc. 
Consider a region V of the system of linear extension R .  The total driving force on this 
region is F = R" f = R" fc. The pinning force per volume felt by the system is on average 
equal to fe The pinning force, Fp(R) ,  felt by the considered region will assume some value 
different from Rdf;~due to spatial fluctuations. Let np be the density of pinning centres. 
The fluctuation away from the average will typically be of the order 

(22) d 2 112 6F IF - Fpl = [npR (f,)] . 
Here (f,") denotes the standard variation of the individual pinning forces. Right at threshold 
the forces on the region V are in balance: F = Fp + Fb. Here Fb denotes the total force 
across the boundary of the region. The aim of this consideration is to show that the force 
per bond in the boundary gfows with size of the region. We have 

(23) Fb F - Fp = F, - Fp [npR d (fo)] 2 112 . 
The forces across the boundary normalized by the volume of the boundary, R"-' is given 
by fb Rd/Z-(d-l). 
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This argument suggests that the stress per bond fb - g(1)’/’ in one dimension grows 
as L‘ with an exponent 01 = $ to be compared with 01 = 0.25 observed in the simulation. 
In two dimensions one expects logarithmic growth in agreement with the simulation result 
quoted above [12]. 

When linear elasticity breaks down, which is bound to happen for real springs since 
the extension grows unbounded, the linear connection between stress and strain is lost and 
the Coppersmith argument can no longer be thought of as an explanation of x > 1. The 
argument still, of course, predicts that the string will break since the stress increases with a 
positive power of the system size. 

5. Pinning force and instabilities 

The most celebrated attempt to calculate the pinning force produced by a collection of 
weak pinning centres is the theory by Larkin and Ovchinnikov (LO) [ I l l .  Here we briefly 
sketch the LO argument applied to our elastic chain. The pinning force is estimated from 
the fluctuations in the pinning forces within a correlated region of size L,: 

(24) 2 ‘ r -  fp = [ n p ~ ~ ~ , , ( f 0  )I A .  
The size of the correlated region is obtained from the energy. The pinning potential induces 
an extension of the chain of order Rp over the length of the correlated region. This leads 
to an increase of the elastic energy of order Eel = k(RP/L,)’ and a decrease in the pinning 
energy of the order Bpin = -Rp fp. Minimizing E = Eel+Epi. with respect to L, determines 
L, in terms of the model paramenters and f,. Substitution into (24) leads to an expression 
for fp which behaves like fp - (f02)’/3. In our case we will have (ft) -. (AP/Rp)’t. 
Accordingly the LO theory predicts that fp scales like All3. 

In figure 11 we show a double logarithmic plot of the depinning force fc estimated 

logid 4) 

Figure 11. Double logarithmic plot of the threshold fone against the amplitude of the pinning 
centres. The slope of the straight line is equal to in mordance with collective pinning theory. 
Parameters ax L = 320, RQ = 0.125 and nQ = 0.37. 

t It should be noted that the LO theory assumes the pinning forces to be uncorrelated With the elastic medium 
when (f;) is estimafed. 
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from the velocity-force curves as a function of A,. We find that fc - A; with n = $ as 
is seen from the agreement between the straight line (of slope 5") and the data points of the 
simulation. Hence, the depinning force appears to be well estimated by the LO argument. 
We did not encounter the same agreement previously in two dimensions [12]. The deviation 
between the data points and the straight line observed in the region near A, = 1 is to be 
expected. This occurs when L, % 1. 

It makes no 
reference to the elastic instabilities responsible for the existence of a non-zero threshold 
force [26,19,12,22,23]. For this reason the agreement shown in figure 11 between scaling 
of the LO expression and the simulated depinning force is remarkable. 

In order to make a connection to the elastic instabilities we will consider another measure 
of the threshold force. Namely, the average pinning force, P ,  experienced during a quasi- 
static shift at the depinning threshold (see section 2.1 above). We define [13,26] 

The LO estimate of f, as presented above is a static scaling force. 

(25) 
l L  

. ~ F =  lim - 
L-,- L 1 *p(h)dh 

where fp(h) denotes the pinning force (for a given realization of the pinning potential) 
acting on the string at the centre-of-mass position h. In the limit of vanishing velocity of 
the s@ing k-. is a good measure of the depiuning force. Moreover, we will now show how P 
is connected to the distribution of energy discontinuities. This will enable us to understand 
the observed size scaling of the average energy release (A). 

Whenever the total energy of the string is a smooth function of the string position h 
one finds that [13,26] 

fp(h) = au /ah .  (26) 
This   expression allows us to establish a convenient connection between F and the 
discontinuities in the total energy of the string. See figure 3. Substituting (26) into (25) we 
obtain (hd denotes the positions where the discontinuity occur) 

= U / AEP(AE)d(AE) 

= U ( A E ) .  (27) 
Here U denotes the number of discontinuities encountered per unit shift of the string. 
In our case, where the string is defined by a fixed number of beads and the pinning 
centres all sit on the rails, (see figure 1) we have U c( I /L .  Thus, if we assume that 
limL+m F + constant < cat we must have ( A E )  - 1/L. This was in fact the scaling 
observed in the insert of figure 6(a). 

6. Summary and discussion 

We have studied an elastic string in a random potential. The continuous string is replaced 
by a set of beads elastically coupled together. The position of the beads are continuum 
variables restricted to straight rails. We find that the strain per length of the chain induced 
by the random potential growth with the chain length as the string is moved through the 

t The work (per chain length) needed to enter the steady slate in which W ( L .  t )  has Saturated might diverge with 
L since g(1) diverges with L. This does not imply that the work (again per chain length) needed to maintain the 
saturated state diverges with L. 
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random background at the depinning threshold. The roughness of the string is characterized 
by three scaling exponents f i  0.9, IJ N 0.9 and x rr 1.15. The exponent p describes the 
early temporal evolution of the roughness as the string is started out form the straight 
configuration. The exponent 7 describes spatial dependence of the height correlation 
function g(x )  = A ( L ) x a ( L  - x)’q in the regime where the roughness has saturated. The 
exponent x controls the size dependence of the amplitude A ( L )  - L’(X-’”’. 

Our model does not contain a threshold condition in the definition of the microscopic 
update of the model. Abrupt depinning events with sudden releases of bursts of energy 
occur as a consequence of elastic instabilities. The distribution of energy releases per length 
exhibit algebraic behaviour in the region of small energies followed by an exponential tail in 
the high-energy regime. We find that the average energy release decreases as one over the 
length of the chain. This was explained by making a connection between the average energy 
release and the average force needed to move the string through the background potential. 

We have compared our simulation of the dynamics derived from the equation of motion 
for an elastic chain with various growth algorithms. Overall we find agreement between our 
simulation of the equation of motion-and the simulations of cellular automata or coupled 
lattice-map-lie models. There is, though, one important exception. The growth model 
studied by Sneppen [%IO] has x < 1 instead of x > 1 as found for the elastic chain. The 
reason is that Sneppen’s update algorithm conshicts the local slope. 

Since x > 1 the elastic string will inevitably break as the length of the string is 
increased. This implies that there exists no weak-pinning elastic limit of the depinning 
transition. This is also the case in higher dimensions [12,4]. A realistic study of interface 
growth and depinning must allow for breaking of the interface. Precisely how the breaking 
takes place will depend on the specific system considered. A liquid interface will close 
in behind obstacles, a flux line in a superconductor will leave small flux loops behind at 
regions of stronger pinning. The breaching of the interface will decrease the fluctuations in 
the width of the interface. As a consequence we expect x to decrease. The actual value of 
x will probably depend on the relevant mechanism by which the interface breaks. Hence, 
for systems of a size large enough to make the elastic description insufficient we do not 
expect the existence of a single universal exponent x. 
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